Abstract
Urbanization causes changes in near-surface meteorology and rainfall-runoff relationships that threaten to place hydraulic stress on vegetation. The goal of this study was to investigate the differences in riparian zone tree hydration state, as indicated by leaf water potential, between an urban and a rural stream site, and to understand how the trees respond differently to precipitation events. At the rural stream site, the streambed was dry due to persistent drought conditions, whereas the urban stream site had established flow due to urban water inputs. The trees at the urban site were found to suffer less hydraulic stress than the trees at the rural site, as indicated by predawn leaf water potential measurements. Additionally, trees at the rural site were found to regulate stomatal openness to reduce transpiration on the day before rain, but not after, due to the presence of near-surface moisture introduced by the rain event. Trees at the urban site did not have to regulate stomatal openness before or after the rain, as the established flow in the stream provided consistent water access. These findings support the viability of protecting and preserving riparian ecosystems in urban settings.
References
Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
Bigelow, S. G., Hillman, E. J., Hills, B., Samuelson, G. M., & Rood, S. B. (2020). Flows for floodplain forests: Conversion from an intermittent to continuous flow regime enabled riparian woodland development along a prairie river. River Research and Applications, 36(10), 2051–2062. https://doi.org/10.1002/rra.3724
Chen, C., Kalra, A., & Ahmad, S. (2019). Hydrologic responses to climate change using downscaled GCM data on a watershed scale. Journal of Water and Climate Change, 10(1), 63–77. https://doi.org/10.2166/wcc.2018.147
Christian, L. N., Banner, J. L., & Mack, L. E. (2011). Sr isotopes as tracers of anthropogenic influences on stream water in the Austin, Texas, area. Chemical Geology, 282(3–4), 84–97. https://doi.org/10.1016/j.chemgeo.2011.01.011
[CoCoRaHS] Community Collaborative Rain, Hail & Snow Network Data Explorer. (2023a). https://dex.cocorahs.org
[CoCoRaHS] Community Collaborative Rain, Hail & Snow Network Data Explorer. (2023b). Viewing Station: TX-HYS-63: Dripping Springs 1.7 NW. https://dex.cocorahs.org/stations/TX-HYS-63
[CoCoRaHS] Community Collaborative Rain, Hail & Snow Network Data Explorer. (2023c). Viewing Station: TX-TV-395: Austin 1.6 E. https://dex.cocorahs.org/stations/TX-TV-395
Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental‐scale drying of the United States atmosphere. Journal of Geophysical Research: Atmospheres, 122(4), 2061–2079. https://doi.org/10.1002/2016JD025855
Franks, P. J., Cowan, I. R., & Farquhar, G. D. (1997). The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant, Cell and Environment, 20(1), 142–145. https://doi.org/10.1046/j.1365-3040.1997.d01-14.x
Gazal, R. M., Scott, R. L., Goodrich, D. C., & Williams, D. G. (2006). Controls on transpiration in a semiarid riparian cottonwood forest. Agricultural and Forest Meteorology, 137(1–2), 56–67. https://doi.org/10.1016/j.agrformet.2006.03.002
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550–1566. https://doi.org/10.1111/nph.16485
Hernandez, M., Miller, S. N., Goodrich, D. C., Goff, B. F., Kepner, W. G., Edmonds, C. M., & Bruce Jones, K. (2000). Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. In S. S. Sandhu, B. D. Melzian, E. R. Long, W. G. Whitford, & B. T. Walton (Eds.), Monitoring ecological condition in the western United States (pp. 285–298). Springer Dordrecht. https://doi.org/10.1007/978-94-011-4343-1_23
Hopkins, K. G., Morse, N. B., Bain, D. J., Bettez, N. D., Grimm, N. B., Morse, J. L., Palta, M. M., Shuster, W. D., Bratt, A. R., & Suchy, A. K. (2015). Assessment of regional variation in streamflow responses to urbanization and the persistence of physiography. Environmental Science & Technology, 49(5), 2724–2732. https://doi.org/10.1021/es505389y
Horton, J. L., Kolb, T. E., & Hart, S. C. (2001). Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species. Tree Physiology, 21(4), 233–241. https://doi.org/10.1093/treephys/21.4.233
Hunt, B., Broun, A., Wierman, D., Johns, D., & Smith, B. (2016, September 20). Surface-water and groundwater interactions along Onion Creek, Central Texas. https://archives.datapages.com/data/gcags/data/066/066001/261_gcags660261.htm
Maherali, H., Moura, C. F., Caldeira, M. C., Willson, C. J., & Jackson, R. B. (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell & Environment, 29(4), 571–583. https://doi.org/10.1111/j.1365-3040.2005.01433.x
Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., & Mencuccini, M. (2014). A new look at water transport regulation in plants. New Phytologist, 204(1), 105–115. https://doi.org/10.1111/nph.12912
Matheny, A. M., Bohrer, G., Stoy, P. C., Baker, I. T., Black, A. T., Desai, A. R., Dietze, M. C., Gough, C. M., Ivanov, V. Y., Jassal, R. S., Novick, K. A., Schäfer, K. V. R., & Verbeeck, H. (2014). Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysis. Journal of Geophysical Research: Biogeosciences, 119(7), 1458–1473. https://doi.org/10.1002/2014JG002623
Medlyn, B. E., Duursma, R. A., De Kauwe, M. G., & Prentice, I. C. (2013). The optimal stomatal response to atmospheric CO2 concentration: Alternative solutions, alternative interpretations. Agricultural and Forest Meteorology, 182–183, 200–203. https://doi.org/10.1016/j.agrformet.2013.04.019
Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2007). Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophysical Research Letters, 34(19), 2007GL030948. https://doi.org/10.1029/2007GL030948
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24. https://doi.org/10.1002/qj.49710845502
Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., & McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292–297. https://doi.org/10.1038/nclimate1693
Passarello, M. C., Sharp, J. M., & Pierce, S. A. (2012). Estimating urban-induced artificial recharge: A case study for Austin, TX. Environmental & Engineering Geoscience, 18(1), 25–36. https://doi.org/10.2113/gseegeosci.18.1.25
Pettit, N. E., & Froend, R. H. (2018). How important is groundwater availability and stream perenniality to riparian and floodplain tree growth? Hydrological Processes, 32(10), 1502–1514. https://doi.org/10.1002/hyp.11510
Phelan, C. A., Pearce, D. W., Franks, C. G., Zimmerman, O., Tyree, M. T., & Rood, S. B. (2022). How trees thrive in a dry climate: Diurnal and seasonal hydrology and water relations in a riparian cottonwood grove. Tree Physiology, 42(1), 99–113. https://doi.org/10.1093/treephys/tpab087
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., & de Noblet, N. (2011). Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Climate Change, 2(6), 828–850. https://doi.org/10.1002/wcc.144
Potts, D. L., & Williams, D. G. (2004). Response of tree ring holocellulose δ13C to moisture availability in Populus fremontii at perennial and intermittent stream reaches. Western North American Naturalist, 64(1), 27–37. http://www.jstor.org/stable/41717338
Poudel, U., Ahmad, S., & Stephen, H. (2020, May). Impact of Urbanization on Runoff and Infiltration in Walnut Gulch Experimental Watershed. In Watershed Management Conference 2020 (pp. 219-232). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784483060.020
Rood, S. B., Bigelow, S. G., & Hall, A. A. (2011). Root architecture of riparian trees: River cut-banks provide natural hydraulic excavation, revealing that cottonwoods are facultative phreatophytes. Trees, 25(5), 907–917. https://doi.org/10.1007/s00468-011-0565-7
Running, S. W. (1976). Environmental control of leaf water conductance in conifers. Canadian Journal of Forest Research, 6(1), 104–112. https://doi.org/10.1139/x76-013
Sala, O.E., & Lauenroth, W.K. (1982). Small rainfall events: An ecological role in semiarid regions. Oecologia, 53, 301–304. https://doi.org/10.1007/BF00389004
Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189, 115-117.
Schwinning, S., & Ehleringer, J. R. (2001). Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems: Water use trade-offs in pulse-driven ecosystems. Journal of Ecology, 89(3), 464–480. https://doi.org/10.1046/j.1365-2745.2001.00576.x
Solins, J. P., & Cadenasso, M. L. (2020). Urban channel incision and stream flow subsidies have contrasting effects on the water status of riparian trees. Urban Ecosystems, 23(2), 419–430. https://doi.org/10.1007/s11252-020-00926-2
Sparks, D. (2005). Adaptability of pecan as a species. HortScience, 40(5), 1175–1189. https://doi.org/10.21273/HORTSCI.40.5.1175
Sperry, J. S., & Tyree, M. T. (1988). Mechanism of water stress-induced xylem embolism. Plant Physiology, 88(3), 581–587. https://doi.org/10.1104/pp.88.3.581
Tamaddun, K. A., Kalra, A., & Ahmad, S. (2019). Spatiotemporal variation in the continental US streamflow in association with large-scale climate signals across multiple spectral bands. Water Resources Management, 33(6), 1947–1968. https://doi.org/10.1007/s11269-019-02217-8
Thomsen, J., Bohrer, G., Matheny, A., Ivanov, V., He, L., Renninger, H., & Schäfer, K. (2013). Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan. Forests, 4(4), 1106–1120. https://doi.org/10.3390/f4041106
Tyree, M. T., Cochard, H., Cruiziat, P., Sinclair, B., & Ameglio, T. (1993). Drought‐induced leaf shedding in walnut: Evidence for vulnerability segmentation. Plant, Cell & Environment, 16(7), 879–882. https://doi.org/10.1111/j.1365-3040.1993.tb00511.x
[USDM] U.S. Drought Monitor, National Drought Mitigation Center, University of Nebraska-Lincoln. (2023). Compare Two Weeks. https://droughtmonitor.unl.edu/Maps/CompareTwoWeeks.aspx
[USGS] U.S. Geological Survey Water Data for Nation, U.S. Department of the Interior. (2023). USGS 08157540 Waller Ck at Red River St, Austin, TX. https://waterdata.usgs.gov/monitoring-location/08157540
Wei, C., Chen, W., Lu, Y., Blaschke, T., Peng, J., & Xue, D. (2021). Synergies between urban heat island and urban heat wave effects in 9 global mega-regions from 2003 to 2020. Remote Sensing, 14(1), 70. https://doi.org/10.3390/rs14010070
Williams, C. A., & Cooper, D. J. (2005). Mechanisms of riparian cottonwood decline along regulated rivers. Ecosystems, 8(4), 382–395. https://doi.org/10.1007/s10021-003-0072-9
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., … Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley, J. J., & Yu, Z. (2015). Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5(1), 15956. https://doi.org/10.1038/srep15956
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Michael Snook, Dr. Ashley Matheny, Dr. Ana Maria Restrepo Acevedo, Maria Ulatowski