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Estimating statistical power for detecting long term 
trends in surface water Escherichia coli concentrations

Abstract: Water quality monitoring programs commonly use the Mann-Kendall test or linear regression to identify statistically 
significant monotonic trends in fecal indicator bacteria concentrations (typically Escherichia coli [E. coli]). The statistical power 
of these tests to detect trends of different magnitudes (effect size) is rarely communicated to stakeholders, and it is unlikely they 
are considered when designing monitoring schedules. The statistical power for detecting trends in surface water E. coli bacteria 
concentrations using Mann-Kendall and linear regression at water quality monitoring sites across Texas was estimated using 
Monte Carlo simulation. The probability that an individual water quality monitoring site in Texas had adequate statistical power 
was also estimated using logistic regression.

Mann-Kendall and linear regression trend tests show similar statistical power. Both tests are unlikely to achieve adequate 
statis-tical power when E. coli concentrations decrease by 20% or less over 7 years under most sampling frequencies. To 
adequately detect concentration decreases of 30% to 40% over 7 years, monthly sampling is required. Because many sites 
across Texas are sampled quarterly, monotonic trends tests will not be powerful enough to detect trends of moderate 
magnitudes. To better facil-itate stakeholder decision-making, it is important to communicate the relative power of statistical 
tests and detectible magnitudes of changes. I suggest data analysts conduct power analyses to improve monitoring 
program designs and improve communication of trend test limitations. Software and training for water quality analysts 
could facilitate communication of power and effect sizes. Alternative trend assessment methods may be more reliable for 
describing changes in fecal indicator bacteria concentrations.
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Terms used in paper

Acronym/Initialism Descriptive Name
CV coefficient of variation
EPA U.S. Environmental Protection Agency
E. coli Escherichia coli
GLM generalized linear model
LOADEST Load Estimator
mL milliliter
MPN most probable number
SWAT Soil and Water Assessment Tool
SWQM Surface Water Quality Monitoring
TCEQ Texas Commission on Environmental Quality
TMDL Total Maximum Daily Load
WRTDS Weighted Regressions on Time, Discharge, and Season

INTRODUCTION

Excessive concentrations of fecal indicator bacteria are one 
of the primary sources of surface water quality impairment 
in the state of Texas. Fecal indicator bacteria trends are often 
assessed for significant downward or upward trends using sta-
tistical tests. The number of samples and the statistical variance 
directly impact the magnitude (or effect size) that a statistical 
test can reliably detect. This is typically referred to as statistical 
power. Because fecal indicator bacteria concentrations are often 
characterized by high variance, there is considerable likelihood 
that common trend tests are not powerful enough to detect 
trends with the magnitude of interest to stakeholders or deci-
sion-makers under typical monitoring frequencies. The prima-
ry purpose of this article is to provide an improved understand-
ing of and guidance for determining monitoring frequencies 
for trend analyses of fecal indicator bacteria in Texas.

Fecal indicator bacteria are used to assess the sanitary qual-
ity of water for recreational and water supply purposes. Fecal 
indicator bacteria themselves are not dangerous but are uti-
lized as an indicator of potential health risks associated with 
exposure to pathogens associated with fecal matter. Escherichia 
coli (E. coli) is a non-host specific bacteria found in the gut 
of warm-blooded animals and used as a fecal indicator bac-
teria in Texas to assess if streams and other freshwater bod-

ies meet numeric water quality criteria for contact recreation. 
The numeric criterion for E. coli concentrations is based on 
U.S. Environmental Protection Agency (EPA) epidemiologi-
cal studies correlating risks of illness with concentrations of E. 
coli at recreational beaches with point source sewage discharges 
(Dufour 1984; Fujioka et al. 2015). Typical sources of E. coli 
include sewage, domestic livestock, wildlife, and pets, although 
E. coli has also been documented to naturalize in sediment and 
algae (Ishii and Sadowsky 2008).

The Texas Commission on Environmental Quality (TCEQ) 
biennially assesses water quality across the state as part of the 
requirements with the federal Clean Water Act. Water bodies 
that exceed water quality standards are placed on the 303(d) 
list that is provided to EPA. The state is required to develop 
total maximum daily loads (TMDLs) that calculate allowable 
pollutant loads and allocate the loads between different sourc-
es that discharge to a water body when a water body fails to 
achieve improved water quality and removal or delisting from 
the 303(d) list.

In-stream fecal indicator bacteria concentrations typically 
follow a log-normal distribution (Novotny 2004). As a result, 
TCEQ biennially evaluates compliance with the in-stream cri-
terion of 126 most probable number (MPN)/100 milliliters 
(mL) using the geometric mean over a 7-year assessment peri-
od. The geometric mean is simply a measure of central ten-
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dency calculated as the exponential of the arithmetic mean of 
logarithms:

(1)

Simplified, the geometric mean computes the arithmetic 
mean of log(y) and exponentiation returns the mean to the orig-
inal scale. An alternative approach is to take the nth root of the 
product of yi. The current assessment approach requires a min-
imum sample size of 20 over a 7-year assessment period with 
an 80% confidence interval that exceeds the 126 MPN/100 
mL criterion at the lower bound for a stream to be considered 
impaired and added to the 303(d) list of impaired water bodies 
(TCEQ 2019a). Delisting requires 20 samples and a geometric 
mean below the 126/100 mL criterion. TCEQ (2019a) does 
not specify how the confidence interval should be calculated. 
Traditional methods multiply a critical value (obtained from 
the standard normal distribution or Student’s t-distribution) 
by the standard error. Confidence intervals can also be obtained 
by parametric bootstrap methods (Wilcox 2013).

As of 2018, TCEQ identified 237 impaired water bodies 
based on elevated fecal indicator bacteria (TCEQ 2019b). 
TMDLs and implementation plans or watershed protection 
plans are developed for these impaired water bodies to address 
potential fecal indicator bacteria sources. As part of these plans, 
trend analysis is typically conducted to assess if bacterial con-
centrations have increased or decreased over time. Two com-
mon methods for assessing statistical significance of monotonic 
trends are the Mann-Kendall test and linear regression on fecal 
indicator bacteria concentration values (Helsel and Hirsch 
2002; Yue and Wang 2002).

Yue and Wang (2002) described the calculation of the 
Mann-Kendall test and the modifications for correlated data. 
In short, when the Mann-Kendall test statistic, S, is negative, 
newer values tend to be smaller than older values and indicate 
a downward trend. A small absolute value of S indicates no 
trend. The P value of the test statistic is estimated using the 
normal cumulative distribution function. The null hypothesis 
of the Mann-Kendall test is that there is no trend.

Simple linear regressions on log-transformed E. coli concen-
trations are also suitable for identifying trends. In order to assess 
presence of a trend, the following linear regression is used:

(2)

where y is E. coli concentration, β0 is the intercept, β1 is the 
coefficient of time variable x, and ε is the error term assumed 
normally distributed around mean zero. If linear regressions are 
utilized to assess E. coli trends, the analyst should assess model 

residuals to ensure the regression model meets assumptions of 
heterogeneity and normal distribution.

Both the Mann-Kendall test and linear regression are straight 
forward methods for water quality analysts to apply and assess 
trends in E. coli concentrations. They are well accepted and 
have routines available in most statistical software. However, 
general guidance is not available for the number of samples 
required to detect given effect sizes. Current assessment guid-
ance for attainment of the water quality criterion (20 samples 
over 7 years) is adequate given the ability to estimate confi-
dence intervals for the geometric mean calculation. As a result, 
many monitoring programs across the state utilize quarterly 
sampling regimes, which equate to approximately four samples 
per year or 28 samples over a 7-year assessment period.

Often, the results of trends tests are simply communicated as, 
“the Mann-Kendall trend test detected a significant trend (p < 
0.05).” On its own, the presence or lack of statistical significance 
does not provide meaningful information for decision-making. 
The p-value is simply a threshold for the researcher to reject 
the null hypothesis. More bluntly, the researcher infers that an 
effect exists from the p-value, but the p-value does not commu-
nicate the magnitude of the effect or whether it is meaningful. 
Reporting a model coefficient or Sen slope with the p-value 
provides context of effect size. For water quality, this is typically 
described in units of total change or more commonly percent 
change over the time period of interest, such as by saying “a 
statistically significant 35% decrease in fecal indicator bacteria 
was observed.” Such reporting of effect sizes to stakeholders is 
important because it provides context of environmental change 
that is useful for decision-making.

Reporting the results of a trend detection test implies the test 
has the statistical power to detect trends of certain magnitudes 
or effect size. However, that information is rarely reported, and 
it is unlikely that it is routinely calculated by water quality ana-
lysts. Therefore, there is considerable uncertainty if monitoring 
schedules (especially those designed around quarterly monitor-
ing) used across the state are adequate for detecting trends in 
fecal indicator bacteria.

Statistical power refers to the probability that a statistical 
test rejects the null hypothesis when the alternative hypothesis 
is true. In the case of the discussed trend tests, power is the 
probability that the null hypothesis (that no trend is present) 
is rejected when there is in fact a trend in the data. Statistical 
power is a function of pre-assigned significance level (α), effect 
size, sample size, and variance within the time series (Yue et 
al. 2002). First, a meaningful effect size must be determined. 
The effect size might be biologically meaningful or informed 
by stakeholder input. Statistical power can be determined for a 
range of sample size, significance levels, effect sizes and sample 
variance. Using this information, a monitoring program can be 
designed that balances sample size and ability to detect mean-
ingful effect sizes with a trend test.
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could be detected at a given significance level. Using different 
experimental design (such as pre-, post-testing) or improved 
sampling procedures would provide more meaningful insight 
for the stakeholders.

The purpose of this article is to provide some guidance and 
context in determining monitoring frequency for trend anal-
ysis of fecal indicator bacteria, specifically E. coli. First, I esti-
mate the statistical power of Mann-Kendall and linear regres-
sion trend tests at sampling sites across the state using Monte 
Carlo simulation. Second, I provide statistical power plots at 
different effect sizes for a range of observed variance values. 
Finally, I model the likelihood of adequate statistical power for 
E. coli trend detection at sampling sites across Texas.

METHODS

Data

TCEQ Surface Water Quality Monitoring (SWQM) site 
information and associated E. coli samples collected during 
the 7-year period from January 2012 through December 
2019 were obtained from the Water Quality Portal using the 
“dataRetrieval” package in R (De Cicco et al. 2018; R Core 
Team 2019). Data was restricted to river or stream sampling 
sites, and SWQM sites with fewer than one sample per year 
were removed from analysis. In total, E. coli data was assessed 
from 984 SWQM sites (Figure 1). Stations were also divided 

Two examples are described to provide practical context of 
statistical power and effect sizes. In the first scenario, a water-
shed group is interested in monitoring E. coli concentration 
trends following the installation of a large best management 
practice in the watershed. The best management practice is 
expected to result in a 10% reduction in bacteria concentra-
tions over 5 years. The monitoring plan will need to determine 
how many samples are needed annually to confidently detect 
the hypothesized trend. If too few samples are collected, a 10% 
change may never be detected by the hypothesis test. If too 
many samples are collected, trends of smaller effect size can be 
detected. However, the group is not interested in detecting a 
small effect and the money could be better used elsewhere by 
the group.

In the second scenario, a watershed group is analyzing E. coli 
data collected over the last 7 years. In this case, the number of 
samples is already established. The hypothesis test fails to reject 
the null hypothesis that there is no trend in the bacteria data. 
The watershed group is disappointed because they worked 
hard to address bacteria sources and expected at least a small 
improvement in bacteria concentrations. In this case, a post-
hoc power analysis indicates that the statistical power is 0.80 
when there is an 40% change in bacteria concentrations over 
7 years. Power analysis also indicates that the statistical power 
drops to 0.40 if there is only a 30% change in bacteria con-
centrations. In this case, it is important to tell the group that 
based on the number of samples, it was unlikely that a trend 

Figure 1. Map of TMDL and non-TMDL stream and SWQM site locations.

https://www.waterqualitydata.us/
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into groups based on the presence or absence of an indicator 
bacteria TMDL. Water body locations and TMDL classifica-
tion were spatially linked to a SWQM station location layer to 
classify SWQM stations as located within or outside a TMDL 
water body (TCEQ 2020). Although stations could have been 
split by a number of different variables (for example, watershed 
protection plans, impairment status, or region), TMDLs were 
used due to the simplified association with specific water bod-
ies and relatively high number of indicator bacteria TMDLs to 
ease interpretation of results.

Statistical power computation

The significance level, α, is the probability of rejecting the 
null hypothesis when it is true (Type I error). The probability 
of accepting the null hypothesis when it is false is a Type II 
error (β). The statistical power of a test is the probability of 
rejecting the null hypothesis when the alternative hypothesis is 
true and is equal to 1 - β. A power of 0.80 is typically consid-
ered appropriate, which equates to a 20% chance of encoun-
tering a Type II error. If sampling from a population where the 
null hypothesis is false, power is calculated as:

(3)

where N is the total number of tests and Nrejected are the total 
number of times the test rejected the null hypothesis.

For each SWQM site, Monte Carlo simulation was used to 
observe the statistical power of the Mann-Kendall and linear 
regression test for detecting trends (Sigal and Chalmers 2016). 
The simulation generates 1,000 independent log-normal dis-
tributed time series samples per evaluated effect size for each 
SWQM site using the site-specific log-transformed mean and 
standard deviation. Effect sizes were induced by reducing the 
annual log-transformed mean over the 7-year sampling period 
by 10%, 20%, 40%, and 80%. Over 3.93 million simulations 
were run per trend detection method. Significance level, α, was 
set at 0.10. The Mann-Kendall test and linear regression were 
applied to each simulation sample and the number of times the 
tests correctly rejected the null hypothesis (Nrejected) were tabu-
lated. Statistical power plots were also generated using Monte 
Carlo simulation on sample datasets generated using the quar-
tiles (lower, median, and upper) of the observed coefficient of 
variation (CV) of E. coli from SWQM sites. CV is a method 
of measuring the spread of a distribution relative to the size 
of the mean; specifically, it is ratio of the standard deviation 
to the mean. These power plots provide a general idea of the 
expected statistical power of characteristic E. coli datasets in the 
state using typical sampling intervals. They are not intended to 
be a replacement for conducting a statistical power test using 
site-specific data.

Likelihood of adequate statistical power

I modeled the likelihood that a SWQM site would have 
adequate statistical power (≥ 0.80) as a function of sample 
size, variance, and effect size using generalized linear mod-
els (GLMs). GLMs are an extension of linear regression that 
allows for response variable with non-normal error distribu-
tions through the use of a link function. GLMs were setup as a 
logistic regression model of form:

(4)

where the probability of adequate statistical power is response 
on the right-hand side of the equation and is a function of 
the sum of the dependent variables with their corresponding 
coefficients (β) and random errors (ε). GLMs were fit using the 
“glm” function in R with the binomial family and logit link 
function.

RESULTS

Monitoring frequency

Out of the 987 evaluated SWQM sites, 329 were located in 
water bodies with a TMDL. A total of 22,766 samples were 
collected at the 658 non-TMDL SWQM sites compared to 
13,008 collected at the 329 TMDL SWQM sites. SWQM sites 
located on water bodies without a TMDL were generally sam-
pled three to four times per year (Figure 2). SWQM sites with 
a TMDL skewed higher, with a peak at nine times per year and 
smaller peaks at four and six times per year. This suggests that 
increased monitoring efforts are targeted towards sites with 
TMDLs. Similarly, the E. coli geometric mean skewed higher 
at sites with a TMDL (Figure 3). This is expected as TMDL 
sites are impaired for bacteria, although there are non-TMDL 
sites that are also impaired and a TMDL has not been devel-
oped yet.

Estimated statistical power at SWQM sites

At current annual sampling frequencies, all SWQM sites fell 
below 0.80 power for detecting effect sizes of 10% (Figure 4). 
At 20% effect size, all non-TMDL sites had less than 0.80 pow-
er. The majority of TMDL SWQM sites fail to detect a 20% 
change. However, there is large observed variance in statistical 
power for TMDL sites at 20% effect size. At 40% and 80% 
effect sizes, the majority of TMDL SWQM sites had power 
above 0.80. Non-TMDL SWQM sites exhibit high variance 
at 40% effect sizes and sufficient statistical power at most sites 
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Figure 2. Histograms of annual E. coli sampling distribution for TMDL and non-TMDL SWQM sites across Texas (January 
2012 through December 2019).

Figure 3. Scaled density plots of E. coli geometric mean distribution for TMDL and non-TMDL SWQM sites across Texas.
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Figure 4. Scaled density plots of Mann-Kendall and linear regression statistical power distribution for TMDL and non-
TMDL SWQM sites as a function of effect size at ɑ = 0.1. Individual curves represent the scaled density estimate of 
statistical power values calculated for SWQM sites at a given effect size (y-axis values).

Figure 5. Estimated statistical power of Mann-Kendall and linear regression trend tests at upper, middle, and lower 
quartiles of observed station E. coli variance.
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at 80% effect size. These differences coincide with the higher 
sampling efforts devoted to TMDL SWQM sites.

The upper, middle, and lower quartiles of the CV across all 
sites was 2.71, 1.96, and 1.36. The CV values indicate the rel-
atively high variance in E. coli concentrations within SWQM 
sites. Statistical power calculated for the Mann-Kendall and 
linear regression tests on simulated E. coli datasets at the iden-
tified CV quartiles is displayed in Figure 5. For each test, as CV 
increases, statistical power decreases at each given effect size. 
Overall, both methods show similar statistical power.

Neither method has adequate power to detect trends at 10% 
effect size. At median variance, both tests have marginal pow-
er to detect trends of 30% with 12 samples per year. At 40% 
effect size, Mann-Kendall and linear regression require five and 
four samples per year respectively to achieve greater than 0.8 
power. At 50% and greater effect size, three or fewer samples 
per year are required to achieve adequate power. It is important 
to note that these figures are developed for typically expected 
E. coli distributions at SWQM sites. A site-specific power anal-
ysis conducted using existing sample sets would provide a more 

accurate assessment of the expected sample distribution and 
estimated statistical power.

Likelihood of obtaining statistical power

Variance, sample size, and effect size are significant and sub-
stantial predictors of the probability that a SWQM site will 
have adequate power for detecting trends using linear regres-
sion or Mann-Kendall test methods (Table 1). Figure 6 displays 
the estimated effect of sample size and effect size on probabil-
ity of adequate statistical power being obtained at a SWQM 
site. At mean variance values and large effect sizes, it is likely 
that adequate power will be obtained regardless of sample size. 
Probability decreases substantially as effect size and sample size 
decrease. Even with monthly sampling, there is only 0.5 prob-
ability that a SWQM site will obtain 0.80 power for detecting 
a 10% effect size.

The GLM models demonstrate the implications of sample 
design for identifying trends at SWQM sites. Non-TMDL 
sites often have four or fewer samples per year (Figure 2). The 

Figure 6. GLM marginal effects plots show the likelihood that a SWQM site has adequate statistical power for detecting 
trends as a function of the number of samples and desired detected effect size. CV is held constant at the mean.

Table 1. GLMs for probability of adequate statistical power.

Mann-Kendall Linear regression
Variable OR1 95% CI1 p-value OR1 95% CI1 p-value

CV 0.39 0.34, 0.45 <0.001 0.38 0.33, 0.43 <0.001
Sample size 1.74 1.66, 1.83 <0.001 1.72 1.63, 1.80 <0.001
Effect size 0.90 0.89, 0.90 <0.001 0.89 0.89, 0.90 <0.001

1 OR = odds ratio, CI = confidence interval
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likelihood of detecting all but the largest of changes in E. coli 
concentrations at non-TMDL sites are small. TMDL sites gen-
erally implement more sampling effort through the year and 
are more likely to obtain adequate power for identifying trends 
of smaller magnitude. In either case, the relative detectable 
effect size might seem high to stakeholders given the sampling 
effort expended.

DISCUSSION

The primary objective of this exploratory analysis is to com-
municate the importance of considering effect sizes when 
utilizing hypothesis tests to identify trends in fecal indicator 
bacteria datasets. Given the high variance observed in E. coli 
samples, I observed relatively low power for detecting trends 
of 20% or less in magnitude. Logistic regression demonstrates 
there is low likelihood that SWQM sites will have the desired 
power for detecting up to a 20% change in E. coli. At 40% 
and larger effect sizes, various sampling regimes can be devel-
oped with sufficient power for detecting trends. The paper 
focuses on statistical power and effect size because effect size 
is a more useful metric than p-values and provides environ-
mental or decision-making relevance (Nakagawa and Cuthill 
2007; Hanel and Mehler 2019). While statistical significance 
provides a metric to infer the presence of an effect, statistical 
power and effect sizes provide information about detectable 
magnitudes that can be used to make decisions.

Power calculations prior to development of monitoring 
schedules would allow improved estimation of the number 
of samples required for trend detection. Given the number of 
ongoing monitoring programs across the state, a more likely 
scenario is a post-hoc analysis to identify the minimum effect 
size that is likely to be detected by a trend test. The basis of iden-
tifiable effect sizes requires communication with stakeholders 
to determine meaningful changes in water quality. Conversely, 
power can be calculated after the data are collected to identify 
the statistical power achieved. Water quality management is an 
inherently stakeholder-driven process that requires substan-
tial communication, trust, and knowledge-sharing (Leach and 
Pelkey 2001). Power analysis could be useful for communicat-
ing the anticipated or achieved statistical power of trend tests 
to stakeholders. By focusing discussion on effect sizes and not 
statistical significance, there is increased opportunity for com-
municating understandable results.

Although the Mann-Kendall and linear regression trend tests 
are relatively easy to conduct, statistical power tests are likely 
to be outside the expertise of a typical water quality analyst. 
Communication with a statistician is often recommended 
before sample design. Additionally, for such routinely designed 
water quality monitoring projects, an accessible software pack-
age for water quality analysts would be useful. For example, 

the “emon” package in R provides accessible functions for 
estimating the statistical power of various hypothesis tests on 
environmental data sets (Barry et al. 2017). However, it does 
not include functions for evaluating typically log-normal data 
such as fecal indicator bacteria. There is an opportunity to pro-
vide simplified interfaces for routine power tests. For example, 
the Soil and Water Assessment Tool (SWAT) is now available 
online with a simplified user interface (Yen et al. 2016). SWAT 
is a fairly complex deterministic model used to simulate physi-
cal watershed processes such as streamflow and pollutant load-
ing. Although it is used by hydrologists and researchers around 
the world, it requires substantial user investment to develop 
skills to properly use it. The simplified online interface provides 
calibrated SWAT model outputs that are much more accessible 
to watershed planners and non-modelers. With the increased 
availability of low-cost cloud computing and cloud based sta-
tistical platforms, similar implementation of simplified target-
ed statistical services should be feasible.

Alternative methods for evaluating indicator bacteria trends 
can also be utilized. Statistical models, such as generalized 
additive models, Load Estimator (LOADEST), or Weighted 
Regressions on Time, Discharge, and Season (WRTDS), can 
estimate monthly or annual average fecal indicator concentra-
tions (Runkel et al. 2004; Hirsch et al. 2010; Wood 2011). 
Aggregated modeled values typically have less variance than 
sampled measurements, allowing for improved comparisons 
of year-to-year variations and trends. Furthermore, the mar-
ginal effect of the temporal component of these models can 
be assessed for periods of significant change using confidence 
intervals or decomposed to assess trends under different flow 
conditions (Zhang et al. 2020). It is likely that monthly sam-
pling for at least several years is required to build an accurate 
statistical model. For example, WRTDS recommends 10 to 20 
years of data and at least 100 samples to identify temporal trends 
with confidence. Even this recommendation might be low for 
log-normal data with such high variance. A second drawback is 
the difficulty fitting these models. Generalized additive models 
and WRTDS both rely on the R statistical software and an 
analyst who is proficient in statistical modeling and program-
ming in R. LOADEST is available as a stand-alone executable; 
however, the program still requires some specified training.

Monotonic (and non-linear) trend analysis is not the only 
method to evaluate water quality. A plethora of statistical meth-
ods are available to analysts, and the appropriateness of those 
methods will vary based on the questions that stakeholders and 
decision-makers need answered. It is outside the scope of this 
article to discuss each method and scenario. Underlying the 
effective use of any empirical method is an understanding of 
appropriate sample sizes required to make informed decisions. 
In some cases, exact formulas are available to calculate required 
sample sizes to achieve adequate statistical power. In other cas-
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es, as shown here, Monte Carlo simulation provides an effec-
tive way to estimate statistical power under various scenarios.

It is worth noting that despite the numerous TMDLs and 
watershed-based plans developed in Texas based on fecal indi-
cator bacteria-based assessments, effort is being made toward 
developing risk-based assessments using quantitative microbial 
risk assessment and microbial source tracking (Goodwin et al. 
2017). It is well established that pathogen sources (wildlife, 
raw sewage, or treated effluent for example) influence the infec-
tivity of fecal pathogens, which directly influence the risk of 
infection associated with exposure to water with fecal contam-
ination (Schoen and Ashbolt 2010; Soller et al. 2010; Gitter et 
al. 2020). Management based only on fecal indicator bacteria 
concentrations and not the makeup of the contributing sources 
results in overestimates of human health risk. As methods to 
assess water body compliance with potential future-risk-based 
pathogen exposure criteria develop, the methods to estimate 
and communicate trends and effect sizes with stakeholders will 
also need to evolve.
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